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Abstract. A new Monte Carlo method for the determination of relaxation time constants 
of classical spin systems is presented. The method is applied to a dynamical finite-size 
scaling calculation. 

1. Introduction 

The determination of the equilibrium relaxation time constants of classical spin systems 
through Monte Carlo (MC) simulations play an important part in the analysis of the 
dynamics of such systems. Some examples of such analyses are dynamic renormali- 
zation group studies (Tobochnik and Jayaprakash 1982), direct determination of the 
time constants (for example, see the references cited in Binder 1976), and dynamic 
finite-size scaling (Suzuki 1977). The usual method of determination of the time constant 
involves a study of long-time tails of various spin-correlation functions generated by 
the MC procedure. The estimation process becomes difficult if the time constants and 
the fluctuations are large, which corresponds to the interesting case of critical dynamics. 
In practice, there is usually some subjectivity as to when an asymptotic region starts 
or what the best fit to very noisy MC data is (see, for example, Aydin and Yalabik 1984). 

In this study, we introduce a modified MC procedure through which the time 
constants can be determined directly within an approximation. The method is much 
more efficient and objective in comparison to the conventional methods. We utilize 
this method to determine the magnetization relaxation time constants of Ising models 
of various sizes. We then use these values in the estimation of the corresponding 
dynamical critical exponent z through finite-size scaling. 

2. Method 

Consider an Ising model whose kinetics is defined by the master equation 

d P  
- = 3 P  
dt  

where P represents the probabilities of being in certain states, and 3 is the Liouville 
operator. 2 has an equilibrium eigenvector Peq, such that 

Y P e ,  = 0 (2) 
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where Peg represents the probabilities of being in certain states at equilibrium. Besides 
the eigenvector given in equation (2),  other eigenvectors of 2 correspond to various 
modes in the system that relax with time constants associated with the corresponding 
eigenvalues. For example, if 

2*, = Ai$ (3)  
one possible solution to equation (1) is 

~ ( t )  = Peq+eh"+t.  (4) 
Each eigenvalue A i  then corresponds to a relaxation time constant T~ = -l/Ai of the 
system. These eigenvalues cannot be positive quantities. (The reader is referred to 
Kawasaki (1972) for a detailed analysis of the Liouville operator.) 

The relaxation time constant diverges at the critical point of the system. The 
dynamical critical exponent z may be defined through the asymptotic relation 

7 - 5' ( 5 )  
where 6 is the correlation length of the system (which itself diverges at the critical 
point) and T is a relaxation time constant in the system. The value of z is known to 
be universal for a large class of models (Hohenberg and Halperin 1977). As is well 
known, this non-analytic behaviour is possible only in an infinitely large system. 
However, one can calculate the value of z using the largest relaxation time constants 
of finite size systems. One is therefore usually interested in only a few of the eigenvalues 
of the Liouville operator near the critical temperature of the system. 

In this work we will be interested in the computation of the dynamical critical 
exponent corresponding to the relaxation of the magnetization. Therefore we will 
consider the eigenvector $,,, that corresponds to the symmetry of magnetization. This 
eigenvector must have the property that 

$m({s}) = -$m({ - s } )  ( 6 )  
where {s} represents the spin variables associated with the Ising model. The eigenvalue 
equation for 2 then looks like 

Here $+ corresponds to that part of the eigenvector which is related to the positive 
magnetization values and +- is related to the negative magnetization values. We have 
assumed that the value of the eigenvector corresponding to a zero-magnetization state 
is zero. If  the kinetics represented by equation (1) corresponds to the flipping of only 
one spin at a time, one has 

L13 = L31= 0. (8) 
Note that zero-magnetization states are possible only in systems with an even number 
of spins. Equation ( 7 )  can be written as 

LI ,$++LIzO+ L13$- = Am$+* (9) 
The last two terms in the left-hand side are zero, so that 
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where Z is the unit matrix. The new matrix L ,  - A,Z, then has one zero eigenvalue. 
The vector ++ then in some sense corresponds to an ‘equilibrium’ eigenvector of this 
new matrix. The determination of this eigenvector is not straightforward since A, 
(which is the eigenvalue related to the time constant for the decay of magnetization) 
is not known. We will now present an MC procedure which generates states whose 
probability of occurrence is given by ++, and at the same time enables one to determine 
A, which is the actual quantity of interest. Consider the standard Metropolis 
(Metropolis et a1 1953) algorithm that corresponds to the transition rates in the matrix 
L , ,  - A,Z. The implementation of the procedure is identical to the conventional one 
for determining Peq, apart from the following points: The -A,Z term adds a constant 
positive term (since A must be negative) to the diagonal elements. This corresponds 
to a ‘branching transition’ in which a state duplicates itself into another system. On 
the other hand, L I1  contains terms which correspond to a transition to a zero-mag- 
netization state, which is no longer represented in ++. Hence, the total probability 
decreases due to transitions into the zero-magnetization states and increases due to 
the branching transitions. The value of A, is to be ‘adjusted’ (i.e. it is to be determined) 
such that the increase balances the decrease. This can easily be achieved in practice 
by introducing one of the ‘branching’ states each time a zero-magnetization state is 
encountered. (A branching state is selected from a collection of sample states that are 
saved at regular intervals during the course of the simulation.) The magnetization 
relaxation time T,= - l / A ,  is then directly given by the average ‘lifetime’ of the 
simulation runs (in Monte Carlo steps), starting with the selection of a branching state 
and ending with the transition to a zero-magnetization state. In this study, 1000 samples 
from the simulation were kept as possible candidates for branching states. These 
samples were updated regularly through the simulation. A number of initial runs were 
made to achieve equilibrium in the spin system and the sample population of system 
configurations. 

The algorithm for our procedure can then be summarized as follows. 
1. Start with a ‘suitable’ initial condition (with positive magnetization) for the 

2 .  Compute the total magnetization. 
3. Choose a spin at random as a candidate for flipping. 
4. Following the standard MC procedure, make a decision for flipping this spin. 

Update the total magnetization of the system. At regular intervals, save a ‘copy’ of the 
system for possible use at step 7.  

system. 

5. If the total magnetization is still positive, go to step 3. 
6. Discard the final zero magnetization state thus obtained, noting its total lifetime 

since step 2 .  
7. Choose one of the previous ‘copies’ of the system as a new initial condition, 

and go to step 2. 
The average of the lifetimes obtained in step 6 gives 7,. The averaging procedure 
should start after a suitable amount of time has elapsed to reach equilibrium. 

Note that the MC procedure is being applied directly to the eigenstate +, in contrast 
to the standard procedures in which it is applied to Pes .  We have found out that this 
procedure results in a much more efficient (and objective) determination of the time 
constants in comparison to the determinations based on the analysis of long-time spin 
correlation functions. 

The efficiency of this procedure is a consequence of the fact that one has to only 
keep track of the total magnetization of the system during the simulation, in contrast 
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to procedures in which samples for long-time spin correlation functions must be 
obtained at regular intervals. Each of these samplings involve scanning over the lattice 
coordinates of two copies of the system at two different times, and constitute a significant 
amount of the computer time necessary for the simulation. 

The method was utilized to determine the relaxation times T( n )  of finite-size critical 
Ising models of a number of sizes ( n  x n ) ,  and the dynamical critical exponent z could 
be estimated through the finite-size scaling equation (Suzuki 1977) 

7 ( n ) - n i .  (12) 

3. Results 

In the present work, the relaxation times for the square lattices of sizes n = 2,4,6,8,  10 
were obtained for the two-dimensional Ising model with a non-conserved order para- 
meter. Since the sampling time is much larger than the associated time constants, we 
expect that the statistical errors in the time constants are very small. It should be 
pointed out that the main source of errors in our results is not statistical, but arise due 
to the relatively small values of n considered. Table 1 shows the relaxation time values 
obtained from the MC simulation. 
The log-log plot of T as a function of n is given in figure 1. The critical exponent z 

is obtained from the slope of this graph. Its value was estimated to be z = 2.1 1, which 
is consistent with the range of values reported in the literature (for a recent review see 
Binder and Landau 1989, and Landau er a1 1988). 

Table 1. Relaxation time values obtained from the MC simulation for the two-dimensional 
Ising model. The first column gives the sizes of the lattices. Sampling time corresponds to 
the number of MCS (per site) in which statistical values are taken. The last column shows 
the relaxation time values for these sizes. 

n Sampling time (MCS) 7 (MCS) 

2 2.8 x 104 12.6 
4 2.1 x io4 51 
6 6.5 x io4 132 
8 1 1 . 9 ~  io4 245 

10 2.7 x io4 351 

~- 
2 4 6 8 lo 

n 
Figure 1. Log-log plot of T as a function of n. 
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It is to be emphasized again that our method for determining the relaxation time 
constant is much more efficient and straightforward than extracting a time constant 
from time plots of spin-spin correlation. 
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